History of Human-Machine Interface

History_HumanMachine-interface

Source: Infographicszone

Posted in Computer history | 1 Comment

The Challenge of Automation, 1965

Automation_Newsweek25Jan1965

Kevin Maney, “Will AI Robots Turn Humans Into Pets?” April 2, 2017:

Here’s a question worth considering: Is this AI tsunami really that different from the changes we’ve already weathered? Every generation has felt that technology was changing too much too fast. It’s not always possible to calibrate what we’re going through while we’re going through it.

In January 1965, Newsweek ran a cover story titled “The Challenge of Automation.” It talked about automation killing jobs. In those days, “automation” often meant electro-mechanical contraptions on the order of your home dishwasher, or in some cases the era’s newfangled machines called computers. “In New York City alone,” the story said, “because of automatic elevators, there are 5,000 fewer elevator operators than there were in 1960.” Tragic in the day, maybe, but somehow society has managed without those elevator operators.

That 1965 story asked what effect the elimination of jobs would have on society. “Social thinkers also speak of man’s ‘need to work’ for his own well-being, and some even suggest that uncertainty over jobs can lead to more illness, real or imagined.” Sounds like the same discussion we’re having today about paying everyone a universal basic income so we can get by in a post-job economy, and whether we’d go nuts without the sense of purpose work provides.

Just like now, back then no one knew how automation was going to turn out. “If America can adjust to this change, it will indeed become a place where the livin’ is easy—with abundance for all and such space-age gadgetry as portable translators…and home phone-computer tie-ins that allow a housewife to shop, pay bills and bank without ever leaving her home.” The experts of the day got the technology right, but whiffed on the “livin’ is easy” part.

Posted in Automation | 1 Comment

The History of the Internet of Things According to William Belk

From early visionaries to futuristic applications, the Internet of Things was fueled by raw innovation in connectivity and robotics.

~1900: Radio Control

http://www.intergalacticvault.com/nikola-tesla-inventions-list-of-7-discoveries-you-may-not-have-heard-of-2016-poll/





~1985: Consumer Cellular Phone

http://mashable.com/2014/03/13/first-cellphone-on-sale/#EUMAjMjMcaqO

~1985: Electronic Toll Collection via Transmitter

https://en.wikipedia.org/wiki/Electronic_toll_collection



~2000: WIFI

~2000: RFID Passports

https://en.wikipedia.org/wiki/Malaysian_passport



Posted in Internet of things | Leave a comment

19th Century Selfies: The Countess of Castiglione

castiglione1

The Metropolitan Museum:

Virginia Oldoini (1837–1899), born to an aristocratic family from La Spezia, entered into an arranged and loveless marriage at age seventeen to Count Francesco Verasis di Castiglione. Widely considered to be the most beautiful woman of her day, the countess was sent to Paris in 1856 to bolster the interest of Napoleon III in the cause of Italian unification. She was instructed by her cousin, the minister Camillo Cavour, to “succeed by whatever means you wish—but succeed!” She caused a sensation at the French court and quickly—if briefly—became the emperor’s mistress. Separated from the husband she had bankrupted by her extravagances, she retreated to Italy in self-imposed exile in 1858. She returned to Paris in 1861, however, and once more became a glamorous and influential fixture of Parisian society, forming numerous liaisons with notable aristocrats, financiers, and politicians, while cultivating an image of a mysterious femme fatale.

In July 1856, the countess made her first visit to the studio of Mayer & Pierson, one of the most sought-after portrait studios of the Second Empire. Her meeting with Pierre-Louis Pierson led to a collaboration that would produce more than 400 portraits concentrated into three distinct periods—her triumphal entry into French society, 1856–57; her reentry into Parisian life, from 1861 to 1867; and toward the end of her life, from 1893 to 1895.

Fascinated by her own beauty, the countess would attempt to capture all its facets and re-create for the camera the defining moments of her life. Far from being merely a passive subject, it was she who decided the expressive content of the images and assumed the art director’s role, even to the point of choosing the camera angle. She also gave precise directions on the enlargement and repainting of her images in order to transform the simple photographic documents into imaginary visions—taking up the paintbrush herself at times. Her painted photographs are among the most beautiful examples of the genre.

While many of the portraits record the countess’ triumphant moments in Parisian society, wearing the extravagant gowns and costumes in which she appeared at soirées and masked balls, in others she assumes roles drawn from the theater, opera, literature, and her own imagination. Functioning as a means of self-advertisement as well as self-expression, they show the countess, by turns, as a mysterious seductress, a virginal innocent, and a charming coquette. Provided with titles of her own choosing, and often elaborately painted under her direction, these images were frequently sent to lovers and admirers as tokens of her favor. Unique in the annals of nineteenth-century photography, these works have been seen as forerunners to the self-portrait photography of later artists such as Claude Cahun, Pierre Molinier, and Cindy Sherman.

.castiglione2

See also here and here and here

Posted in Photography | Tagged | Leave a comment

Peter Drucker on Managing Moron Computers and the Information Utility (1967)

computer_1967

The IBM 360 Model 75 computer at the Rutherford Laboratory, 1967

Peter F. Drucker, “The Manager and the Moron,” McKinsey Quarterly, December 1967

One of the most potentially earthshaking forces in our economy is the technology of information. I don’t mean simply the computer. The computer is to information what the electric power station is to electricity. The power station makes many other things possible, but it’s not where the money is. The money is in the gimmicks and gizmos, the appliances, the motors and facilities made possible and necessary by electricity, that didn’t exist before.

Information, like electricity, is energy. Just as electrical energy is energy for mechanical tasks, information is energy for mental tasks. The computer is the central power station, but there are also the electronic transmission facilities—the satellites and related devices. We have devices to translate the energy, to convert the information. We have the display capacity of the television tube, the capability to translate arithmetic into geometry, to convert from binary numbers into curves. We can go from computer core to memory display, and from either one into hard copy. All the pieces of the information system are here. Technically there is no reason why Sears, Roebuck could not offer tomorrow, for the price of a television set, a plug-in appliance that would put us in direct contact with all the information needed for schoolwork from kindergarten through college.

Already the time-sharing principle has begun to take hold. I don’t think it takes too much imagination to see that a typical large company is about as likely to have its own computer 20 years hence as it is to have its own steam-generating plant today. It is reasonably predictable that computers will become a common carrier, a public utility, and that only organizations with quite extraordinary needs will have their own. Steel mills today have their own generators because they need such an enormous amount of power. Twenty years hence, an institution that’s the equivalent of a steel mill in terms of mental work—MIT, for example—might well have its own computer. But I think most other universities, for most purposes, will simply plug into time-sharing systems….

The impact of information, however, should be greater than that of electricity, for a very simple reason. Before electricity, we had power; we had energy. It was very expensive and rather scarce, but we had it. Before now, however, we have not had information. Information has been unbelievably expensive, almost totally unreliable, and always so late that it was of little, if any, value. Most of us who had to work with information in the past, therefore, knew we had to invent our own. One developed, if one had any sense, a reasonably good instinct for what invention was plausible and likely to fly, and what wasn’t. But real information just wasn’t to be had. Now, for the first time, it’s beginning to be available—and the overall impact on society is bound to be very great.

Without attempting to predict the precise nature and timing of this impact, I think we can safely make a few assumptions.

Assumption No. 1: Within the next ten years, information will become very much cheaper. An hour of computer time today costs several hundred dollars at a minimum; I have seen figures that put the cost at about a dollar an hour in 1973 or so. Maybe it won’t come down that steeply, but come down it will.

Assumption No. 2: The present imbalance between the capacity to compute and store information and the capacity to use it will be remedied. We will spend more and more money on producing the things that make a computer usable—the software, the programs, the terminals, and so on. The customers aren’t going to be content just to have the computer sitting there.

Assumption No. 3: The kindergarten stage is over. We’re past the time when everybody was terribly impressed by the computer’s ability to do two plus two in fractions of a nanosecond. We’re also past the stage of trying to find work for the computer by putting all the unimportant things on it—using it as a very expensive clerk. Actually, nobody has yet saved a penny that way, as far as I can tell. Clerical work—unless it’s a tremendous job, such as addressing 7 million copies of Life magazine every week—is not really done very cheaply on the computer. But then, kindergartens are never cheap.

Now we can begin to use the computer for the things it should be used for—information, control of manufacturing processes, control of inventory, shipments, and deliveries. I’m not saying we shouldn’t be using the computer for payrolls, but that’s beside the point. If payrolls were all it could do, we wouldn’t be interested in it.

Managing the moron

We are beginning to realize that the computer makes no decisions; it only carries out orders. It’s a total moron, and therein lies its strength. It forces us to think, to set the criteria. The stupider the tool, the brighter the master has to be—and this is the dumbest tool we have ever had. All it can do is say either zero or one, but it can do that awfully fast. It doesn’t get tired and it doesn’t charge overtime. It extends our capacity more than any tool we have had for a long time, because of all the really unskilled jobs it can do. By taking over these jobs, it allows us—in fact, it compels us—to think through what we are doing.

But though it can’t make decisions, the computer will—if we use it intelligently—increase the availability of information. And that will radically change the organization structure of business—of all institutions, in fact. Up to now we have been organizing, not according to the logic of the work to be done, but according to the absence of information. Whole organization levels have existed simply to provide standby transmission facilities for the breakdowns in information flow that one could always take for granted. Now these redundancies are no longer needed. We mustn’t allow organizational structure to be made more complicated by the computer. If the computer doesn’t enable us to simplify our organizations, it’s being abused.

Along with vastly increasing the availability of information, the computer will reduce the sheer volume of data that managers have had to cope with. At present the computer is the greatest possible obstacle to management information, because everybody has been using it to produce tons of paper. Now, psychology tells us that the one sure way to shut off all perception is to flood the senses with stimuli. That’s why the manager with reams of computer output on his desk is hopelessly uninformed. That’s why it’s so important to exploit the computer’s ability to give us only the information we want—nothing else. The question we must ask is not, “How many figures can I get?” but “What figures do I need? In what form? When and how?” We must refuse to look at anything else. We no longer have to take figures that mean nothing to us and read them the way a gypsy reads tea leaves.

Instead, we must decide on our information needs and how the computer can fill those needs. To do that, we must understand our operating processes, and the principles behind the processes. We must apply knowledge and analysis to them, and convert them to a clerk’s routine. Even a work of genius, thought through and systematized, becomes a routine. Once it has been created, a shipping clerk can do it—or a computer can do it. So, once we have achieved real understanding of what we are doing, we can define our needs and program the computer to fill them.

Posted in Computer history | Tagged | Leave a comment

Benjamin Franklin on Daylight Saving Time

ben-franklin

Letter to the Editor of the Journal of Paris, 1784

To THE AUTHORS of
The Journal of Paris

1784

MESSIEURS,

You often entertain us with accounts of new discoveries. Permit me to communicate to the public, through your paper, one that has lately been made by myself, and which I conceive may be of great utility.

I was the other evening in a grand company, where the new lamp of Messrs. Quinquet and Lange was introduced, and much admired for its splendour; but a general inquiry was made, whether the oil it consumed was not in proportion to the light it afforded, in which case there would be no saving in the use of it. No one present could satisfy us in that point, which all agreed ought to be known, it being a very desirable thing to lessen, if possible, the expense of lighting our apartments, when every other article of family expense was so much augmented.

I was pleased to see this general concern for economy, for I love economy exceedingly.

I went home, and to bed, three or four hours after midnight, with my head full of the subject. An accidental sudden noise waked me about six in the morning, when I was surprised to find my room filled with light; and I imagined at first, that a number of those lamps had been brought into it; but, rubbing my eyes, I perceived the light came in at the windows. I got up and looked out to see what might be the occasion of it, when I saw the sun just rising above the horizon, from whence he poured his rays plentifully into my chamber, my domestic having negligently omitted, the preceding evening, to close the shutters.

I looked at my watch, which goes very well, and found that it was but six o’clock; and still thinking it something extraordinary that the sun should rise so early, I looked into the almanac, where I found it to be the hour given for his rising on that day. I looked forward, too, and found he was to rise still earlier every day till towards the end of June; and that at no time in the year he retarded his rising so long as till eight o’clock. Your readers, who with me have never seen any signs of sunshine before noon, and seldom regard the astronomical part of the almanac, will be as much astonished as I was, when they hear of his rising so early; and especially when I assure them, that he gives light as soon as he rises. I am convinced of this. I am certain of my fact. One cannot be more certain of any fact. I saw it with my own eyes. And, having repeated this observation the three following mornings, I found always precisely the same result.

Yet it so happens, that when I speak of this discovery to others, I can easily perceive by their countenances, though they forbear expressing it in words, that they do not quite believe me. One, indeed, who is a learned natural philosopher, has assured me that I must certainly be mistaken as to the circumstance of the light coming into my room; for it being well known, as he says, that there could be no light abroad at that hour, it follows that none could enter from without; and that of consequence, my windows being accidentally left open, instead of letting in the light, had only served to let out the darkness; and he used many ingenious arguments to show me how I might, by that means, have been deceived. I owned that he puzzled me a little, but he did not satisfy me; and the subsequent observations I made, as above mentioned, confirmed me in my first opinion.

This event has given rise in my mind to several serious and important reflections. I considered that, if I had not been awakened so early in the morning, I should have slept six hours longer by the light of the sun, and in exchange have lived six hours the following night by candle-light; and, the latter being a much more expensive light than the former, my love of economy induced me to muster up what little arithmetic I was master of, and to make some calculations, which I shall give you, after observing that utility is, in my opinion the test of value in matters of invention, and that a discovery which can be applied to no use, or is not good for something, is good for nothing.

I took for the basis of my calculation the supposition that there are one hundred thousand families in Paris, and that these families consume in the night half a pound of bougies, or candles, per hour. I think this is a moderate allowance, taking one family with another; for though I believe some consume less, I know that many consume a great deal more. Then estimating seven hours per day as the medium quantity between the time of the sun’s rising and ours, he rising during the six following months from six to eight hours before noon, and there being seven hours of course per night in which we burn candles, the account will stand thus;–

In the six months between the 20th of March and the 20th of September, there are

Nights 183
Hours of each night in which we burn candles 7
Multiplication gives for the total number of hours 1,281
These 1,281 hours multiplied by 100,000, the number of inhabitants, give 128,100,000
One hundred twenty-eight millions and one hundred thousand hours, spent at Paris by candle-light, which, at half a pound of wax and tallow per hour, gives the weight of 64,050,000
Sixty-four millions and fifty thousand of pounds, which, estimating the whole at-the medium price of thirty sols the pound, makes the sum of ninety-six millions and seventy-five thousand livres tournois 96,075,000

An immense sum! that the city of Paris might save every year, by the economy of using sunshine instead of candles. If it should be said, that people are apt to be obstinately attached to old customs, and that it will be difficult to induce them to rise before noon, consequently my discovery can be of little use; I answer, Nil desperandum. I believe all who have common sense, as soon as they have learnt from this paper that it is daylight when the sun rises, will contrive to rise with him; and, to compel the rest, I would propose the following regulations; First. Let a tax be laid of a louis per window, on every window that is provided with shutters to keep out the light of the sun.

Second. Let the same salutary operation of police be made use of, to prevent our burning candles, that inclined us last winter to be more economical in burning wood; that is, let guards be placed in the shops of the wax and tallow chandlers, and no family be permitted to be supplied with more than one pound of candles per week.

Third. Let guards also be posted to stop all the coaches, &c. that would pass the streets after sunset, except those of physicians, surgeons, and midwives.

Fourth. Every morning, as soon as the sun rises, let all the bells in every church be set ringing; and if that is not sufficient?, let cannon be fired in every street, to wake the sluggards effectually, and make them open their eyes to see their true interest.

All the difficulty will be in the first two or three days; after which the reformation will be as natural and easy as the present irregularity; for, ce n’est que le premier pas qui coûte. Oblige a man to rise at four in the morning, and it is more than probable he will go willingly to bed at eight in the evening; and, having had eight hours sleep, he will rise more willingly at four in the morning following. But this sum of ninety-six millions and seventy-five thousand livres is not the whole of what may be saved by my economical project. You may observe, that I have calculated upon only one half of the year, and much may be saved in the other, though the days are shorter. Besides, the immense stock of wax and tallow left unconsumed during the summer, will probably make candles much cheaper for the ensuing winter, and continue them cheaper as long as the proposed reformation shall be supported.

For the great benefit of this discovery, thus freely communicated and bestowed by me on the public, I demand neither place, pension, exclusive privilege, nor any other reward whatever. I expect only to have the honour of it. And yet I know there are little, envious minds, who will, as usual, deny me this and say, that my invention was known to the ancients, and perhaps they may bring passages out of the old books in proof of it. I will not dispute with these people, that the ancients knew not the sun would rise at certain hours; they possibly had, as we have, almanacs that predicted it; but it does not follow thence, that they knew he gave light as soon as he rose. This is what I claim as my discovery. If the ancients knew it, it might have been long since forgotten; for it certainly was unknown to the moderns, at least to the Parisians, which to prove, I need use but one plain simple argument. They are as well instructed judicious, and prudent a people as exist anywhere in the world all professing, like myself, to be lovers of economy; and,from the many heavy taxes required from them by the necessities of the state, have surely an abundant reason to be economical. I say it is impossible that so sensible a people, under such circumstances, should have lived so long by the smoky, unwholesome, and enormously expensive light of candles, if they had really known, that they might have had as much pure light of the sun for nothing. I am, &c.

A SUBSCRIBER

 

Source: The Ingenious Dr. Franklin. Selected Scientific Letters. Edited by Nathan G. Goodman. University of Pennsylvania Press. 1931. Pages 17-22.

Posted in Economic Impact | Tagged | Leave a comment

2 Early Networking Experiments

networks_earlyIn 1966-1967, two early networking experiments were influenced by J.C.R. Licklider’s interest in resource sharing and included experiments with the interactive use of remote programs.

Read article »

Posted in Computer Networks | Leave a comment

The Bulletin Board System

bbs

IEEE Spectrum:

For millions of people around the globe, the Internet is a simple fact of life. We take for granted the invisible network that enables us to communicate, navigate, investigate, flirt, shop, and play. Early on, this network-of-networks connected only select companies and university campuses. Nowadays, it follows almost all of us into the most intimate areas of our lives. And yet, very few people know how the Internet became social.

Perhaps that’s because most histories of the Internet focus on technical innovations: packet switching, dynamic routing, addressing, and hypertext, for example. But when anyone other than a network engineer talks about the Internet, he or she is rarely thinking about such things. For most folks, the Internet is principally a medium through which we chat with friends, share pictures, read the news, and do our shopping. Indeed, for those who’ve been online only for the last decade or so, the Internet is just social media’s plumbing—a vital infrastructure that we don’t think much about, except perhaps when it breaks down.

To understand how the Internet became a medium for social life, you have to widen your view beyond networking technology and peer into the makeshift laboratories of microcomputer hobbyists of the 1970s and 1980s. That’s where many of the technical structures and cultural practices that we now recognize as social media were first developed by amateurs tinkering in their free time to build systems for computer-mediated collaboration and communication.

For years before the Internet became accessible to the general public, these pioneering computer enthusiasts chatted and exchanged files with one another using homespun “bulletin-board systems” or BBSs, which later linked a more diverse group of people and covered a wider range of interests and communities. These BBS operators blazed trails that would later be paved over in the construction of today’s information superhighway. So it takes some digging to reveal what came before.

How did it all start? During the snowy winter of 1978, Ward Christensen and Randy Suess, members of the Chicago Area Computer Hobbyist’s Exchange (CACHE), began to assemble what would become the best known of the first small-scale BBSs. Members of CACHE were passionate about microcomputers, at the time an arcane endeavor, and so the club’s newsletters were an invaluable source of information. Christensen and Suess’s novel idea was to put together an online archive of club newsletters using a custom-built microcomputer and a hot new Hayes modem they had acquired.

This modem included an auto-answer feature, to which Christensen and Suess added a custom hardware interface between the modem and the hard-reset switch. Every time the telephone rang, the modem would detect the incoming call and then “cold boot” their system directly into a special host program written in Intel 8080 assembly language. Restarting the system with every call offered a blunt but effective means of recovering from hardware and software crashes—a common occurrence on home-brew hardware of the time.

Once a connection was established, the host program welcomed users to the system, provided a list of articles to read, and invited them to leave messages. Christensen and Suess dubbed the system “Ward and Randy’s Computerized Bulletin Board System,” or CBBS. It was, as the name suggested, an electronic version of the community bulletin boards that you still see in libraries, supermarkets, cafés, and churches.

Anyone with access to a teletype or video terminal could dial into CBBS. And after a few months, a small but lively community began to form around the system. In the hobbyist tradition of sharing information, Christensen and Suess wrote up a report about their project titled “Hobbyist Computerized Bulletin Board,” which appeared in the November 1978 issue of the influential computer magazine Byte.

The article provided details about the hardware they used and how they organized and implemented their software. The authors even included their phone numbers and invited readers to take CBBS for a spin. Acknowledging the experimental nature of the system, they encouraged readers to “feel free to hang up and try several times if you have problems.” After the issue hit newsstands, calls to their computer started pouring in.

Over the next few years, hundreds of small-scale systems like CBBS popped up around the country. Perhaps inspired by the Byte article, many of these new systems were organized by local computer clubs. In 1983, TAB Books, publisher of numerous DIY electronics guides, published How to Create Your Own Computer Bulletin Board, by Lary L. Myers. In addition to explaining the concept and motivation behind online services, Myers’s book included complete source code in the BASIC programming language for host software. The back of the book also listed the telephone numbers of more than 275 public bulletin-board systems in 43 U.S. states. Some charged a nominal membership fee, while most were free to use. The roots of social media were beginning to take hold.

In retrospect, 1983 proved to be a critical year for popular computing. In France, the state-sponsored Minitel system completed its first full year of operation in Paris, making online news, shopping, and chat accessible to every citizen in that city. In the United States, novel commercial systems gained traction, with CompuServe reporting more than 50,000 paying subscribers.

Even Hollywood took interest in cyberspace. The 1983 movie WarGames, featuring a teenage hacker who explored remote computer networks from his bedroom, became an unlikely box-office smash. Although the IMSAI microcomputer and acoustic-coupler modem depicted in the movie once cost as much as a cheap used car, curious computer users inspired by the film could buy serviceable alternatives at the nearest Radio Shack for roughly the cost of a good-quality hi-fi stereo. And as the decade progressed, the online universe expanded rapidly from its original core of microcomputer hobbyists to encompass a much wider group.

Read More

See also BBS Documentary

Posted in Internet, Social Impact, Social Networks | 1 Comment

H.G. Wells on the Future

h-g-wells-future

Posted in Yesterday's Futures | Tagged | Leave a comment

Tesla on the World Brain

In 1904, Tesla, determined to see his idea come to fruition, wrote with absolute certainty that “when wireless is fully applied, the earth will be converted into a huge brain, capable of response in every one of its parts.”

Source: Nikola Tesla’s Dark Secret

Posted in Wireless | Leave a comment