Self-Driving Cars Just Around the Corner: 1958, 1969 and 2016

SelfDriving_1960.jpeg

IEEE Spectrum: (also here and here)

In the late 1950s, the Radio Corporation of America thought it had a lock on the self-driving car. The January 1958 issue of Electronic Age, RCA’s quarterly magazine, featured its vision of the “highway of the future”:

“You reach over to your dashboard and push the button marked ‘Electronic Drive.’ Selecting your lane, you settle back to enjoy the ride as your car adjusts itself to the prescribed speed. You may prefer to read or carry on a conversation with your passengers—or even to catch up on your office work. It makes no difference for the next several hundred miles as far as the driving is concerned.

“Fantastic? Not at all. The first long step toward this automatic highway of the future was successfully illustrated by RCA and the State of Nebraska on October 10, 1957, on a 400-foot strip of public highway on the outskirts of Lincoln.”

Two and a half years later, reporters got to experience this “highway of the future” for themselves, on a test track in Princeton, N.J. Cars drove themselves around the track, using sensors on their front bumpers to detect an electrical cable embedded in the road. The cable carried signals warning of obstructions ahead (like road work or a stalled vehicle), and the car could autonomously apply its brakes or switch lanes as necessary. A special receiver on the dashboard would interrupt the car’s own radio to announce information about upcoming exits.

Pictured above is an experimental autonomous car from General Motors, in which the steering wheel and pedals had been replaced with a small joystick and an emergency brake. Meters on the dashboard displayed the car’s speed as well as the distance to the car in front.

The system was the brainchild of renowned RCA engineer Vladimir Zworykin,who was better known for his pioneering work on television. In a 1975 oral history interview with the IEEE History Center, Zworykin explained his motivation for the autonomous highway: “This growing number of automobiles and people killed in accidents meant something should be done. My idea was that control of automobiles should be done by the road.” (Earlier inventors were similarly motivated by traffic fatalities; see, for example, IEEE Spectrum’s recent article on Charles Adler Jr., who came up with an automatic speed-control system for cars in the late 1920s.)

According to the RCA vision, it would be just a decade or two until all highway driving was autonomous, with human drivers taking over only when their exit approached. Well over half a century later, we’re of course just starting to get comfortable with autonomous vehicles on highways, and the problem of reliably transitioning between autonomous and human control still hasn’t been solved.

As for RCA’s demonstration, one contemporary account, in the Oxnard, Calif.,Press-Courier, made it sound much like the autonomous car experiences of today:

“We stayed about 80 to 100 feet behind the other car, and when it stopped we pulled up smoothly to a halt 20 feet behind it. Then the demonstrator had the first car go around to the other side of the track and stop. Then he activated our automatic works and we started zooming around the single-lane oval.

“ ‘Now,’ said the demonstrator, ‘let’s suppose we’re cruising normally down the highway around a blind curve and we don’t know a car is stopped in front of us and—oops!’

“Our automatic auto apparently didn’t know it either. The demonstrator said later he probably had forgotten to flip a switch. As we sped dangerously close, he had to flip back to manual operation and apply the brakes the old-fashioned way, with a foot. We didn’t hit.

“Nobody screamed. But the age of automation can have its moments.”

selfdriving_1960a

In July 1969, IEEE Spectrum published an article called The Electronic Highway, by Robert E. Fenton and Karl W. Olson, two engineers at Ohio State University who were working on ways to make vehicles operate autonomously when traveling on major highways. Nearly 50 years have passed, which is practically forever in a technological context, but what’s striking about this article is how many contextual similarities there are between the past and the present.

(For more about the history of intelligent transport, make sure to read our feature on Charles Adler, who was working on intelligent traffic control systems in the 1920s.)

The specific solutions that Fenton and Olson propose are a bit outdated, of course, but the problems that they discuss and the future that they look forward to have a lot in common with those peppering current discussions on vehicle autonomy. IEEE members can read the entire article here. We’ll take a look at some excerpts from it, and talk about what’s changed over the last half century, and what hasn’t.

As you read these excerpts, try to keep in mind that the article was published in 1969, and that the 1980s, a decade away, represented the distant future:

An examination of traffic conditions today—congested roadways, a large number of accidents and fatalities, extremely powerful automobiles—indicates the need for improvements in our highway system. Unfortunately, conditions will be much worse in the next decade, for it is predicted that the total number of vehicles registered in the United States in 1980 will be 62 percent greater in 1960, and 75 percent more vehicle miles will be traveled. If one should look further ahead to the turn of the century, he would see vast sprawling supercities, with populations characterized by adequate incomes, longer life-spans, and increased amounts of leisure time. One predictable result is greatly increased travel. The resulting traffic situation could be chaotic, unless some changes are instituted beforehand. 

It is obvious that the traffic problems cannot be solved simply by building more and larger highways, for the for costs are too high, both in dollars and in the amount of land. Many alternative solutions have been suggested: high-speed surface rail transportation; a high-speed, electrically powered, air-cushioned surface transportation system… However, in the opinion of the writers, a majority of the of the public will not be satisfied with only city-to-city transit or even neighborhood-to-neighborhood transit via some form of public transportation. One needs only to witness the common use of private automobiles where such transit already exists. The role of a personal transportation unit is certainly justified by the mobility, privacy, and freedom afforded the occupants. It seems certain that this freedom, which dictates the spatial pattern of their lives, will not be relinquished.

I don’t know about adequate incomes or increased amounts of leisure time leading to greatly increased travel, but what’s definitely true is that more and more people are commuting longer and longer distances to get to work. The authors were certainly correct that the more time we spend in our vehicles, the more important autonomy becomes. At the same time, individual car ownership and usage is starting to get replaced by services that are more decentralized, but autonomy will enable that as well. It’s funny to see that mention of a “high-speed, electrically powered, air-cushioned surface transportation system”; it sounds like they were foretelling the Hyperloop.

In this light, one satisfactory solution would be the automation of individual vehicles. This approach has been examined by a number of researchers, for in addition to the retention of the individual transportation unit, it appears that considerable improvement in highway capacity and safety as well as a considerable reduction in driver effort can be achieved. However, there is an extremely large number of possible systems for achieving this goal—the writers have counted 1296—and great care must be exercised so that an optimum or near optimum one is chosen.

The approach described in this article involves the concept of a dual-mode system, whereby the vehicle (which must be specially equipped) is manually controlled on nonautomated roads and automatically controlled on automated ones.

The system that the authors suggest, which is typical for automated driving system ideas of that era, relies heavily on infrastructure built into the highway directly. The well-defined and highly structured environments of highways are where today’s autonomous cars both perform the best and are the most valuable. The authors of the 1969 article weren’t all that worried about automating other types of roads, because they figured that it simply wouldn’t be worth the hassle and expense. In the near term, this is where many autonomy projects are finding success as well.

However, highway autonomy that’s based on the highway itself is much harder to expand, and the total infrastructure overhaul needed to implement it in the first place wouldn’t be cheap. Even in 1969 dollars, it sounds expensive:

It is expected that with the introduction and extended use of microcircuits, it will be possible to install all necessary equipment in the vehicle for several hundred dollars. The total investment in computers and highway-based sensors would probably average anywhere from $20,000 to $200,000 per lane mile (about $12,000 to $120,000 per lane kilometer), depending on the form of the chosen system and future technological advances.

One can expect two principal returns from such an investment: greatly increased lane capacity at high speeds and a reduction in the number of highway accidents. Estimates of the former range up to 800 percent and would depend, of course, on the chosen system design. The expectation of fewer accidents arises from the fact that an electronic system can provide a shorter reaction time and greater consistency than a driver can. 

img

Photo: The Ohio State University
Sensing coils for an automated steering system, circa 1969

It’s interesting that Fenton and Olson sound like they’re more focused on increasing capacity than on safety, which is the opposite of how most vehicle autonomy projects are presented right now. This is likely because the efficiency benefits require some critical mass of autonomous vehicles all working together. It’s much easier to achieve this with expensive automated highways and cheap automated vehicles, rather than ‘dumb’ highways that require each vehicle to have its own automation system, which is what we’ve got going now.

As for the vehicles themselves, the “near future” might provide something better than internal combustion, the authors hope:

It is probable that vehicles would be powered by the internal combustion engine; however, a number of other prime movers— the DC motor, the gas turbine, the steam engine, and the linear induction motor— may be available and practical in the near future. The eventual choice will probably be dictated by such factors as air pollution and the continuing availability of cheap fossil fuel.

One attractive possibility involves the use of electrically powered cars, which would be self-powered via batteries on non-automated roads and externally powered on automated ones. Here, power would be supplied through a pickup probe protruding from the vehicle, and control could be obtained by simply controlling the power flow.

img

Photo: The Ohio State University
An image from the original 1969 article, illustrating the idea of a vehicle drawing current for propulsive power from the roadway.

Electrically powered vehicles that harvest electricity from highways and use batteries to get around elsewhere are currently being tested in Sweden.

Another important contemporary issue that the 1969 article mulls over: Should a human play any role at all in operating the autonomous vehicle?

An important question that is frequently raised is the advisability of allowing the driver to override the system. If he were able to do so, there would be a large measure of randomness in the system, which would be undesirable from a standpoint of both safety and system efficiency.

This remains one of the more difficult problems with consumer vehicle autonomy: unless you can promise 100-percent capability for your system, a human “driver” has to be involved. But how do you make sure that the human is alert and able to take over when necessary? Tesla reminds drivers to keep their hands on the wheel, and will begin to gradually slow the car if you persistently ignore it. Google, on the other hand, doesn’t trust humans even that far, which is why it’s working on autonomous cars without steering wheels.

The authors of the 1969 article have a slightly different perspective, but their concern about the “undesirable randomness” of human drivers foreshadows the day (it’s getting closer, we promise) when the most dangerous car on the road will be the one driven manually by a human.

There is also a need for communication links to a central station so that there will be a complete “picture” of the traffic state at all times.

Combining vehicle autonomy with systems that allow vehicles to communicate with each other (and with a central coordination system) will allow for all kinds of exciting things, like flow optimization, cooperative route planning, and even intersections without traffic lights.

There seems little question that vehicle automation is technologically feasible; however, a tremendous amount of effort in both research and development will be required before a satisfactory automatic system is in operation. This effort must involve not only vehicle-control studies, but also an intensive investigation of the present driver-vehicle complex, since the knowledge gained will be necessary for the proper specification and introduction of the control system components. Further, the need exists for intensive overall system studies so that optimum strategies can be chosen for headway spacing control, merging and lane changing, and the interfacing of automated highways with other modes of future transportation. 

The authors’ conclusion is as true now as it was in 1969. Since then, the focus has changed somewhat, with highway autonomy seen as just a step towards full autonomy—and not necessarily a step that can be taken independently. Technology has improved to the point where it’s now feasible to pack all of the sensors and computers needed for autonomy into vehicles themselves, rather than having to rely on external infrastructure. This makes the transition to autonomous vehicles more straightforward, partly because it’s something that can be motivated by the market rather than by the government.

At the same time, though, I certainly appreciate the vision that the authors had for expensive automated highways that the average driver could take advantage of with a relatively inexpensive car. Here in Washington, D.C., for example, adding autonomy infrastructure to the beltway alone would vastly improve the commuting experience for an enormous number of people on a daily basis—that is, if existing cars could be cheaply retrofitted with the technology. This isn’t the trajectory we’re on anymore, but it’s interesting to look back and think about what would have happened if we’d taken a different road.

selfdriving_ford

Mark Fields, the chief executive of Ford Motor Company, said his company would sell completely self-driving cars by about 2025, after first providing them via ride-hailing service, in 2021.

Such cars would have “no steering wheel, no brake pedal,” he said. “Essentially a driver is not going to be required.”

At first these robocars will cost more than conventional cars, he admitted, but the ride-hailing application will make up for that by saving the salary of a professional driver. Later, the rising scale of production will lower the sticker price enough to justify offering the robocars for sale. Ford can make money either way.

“Now vehicle miles traveled are just as important as the number of vehicles sold,” Fields said.

As robocars proliferate and cities impose congestion fees and other measures to limit traffic, total car sales may well drop. “But you can also argue that autonomous vehicles will be running continuously and will rack up more miles—and that that will mean more replacement.”

Ford has begun framing itself as a mobility company rather than a mere car company, and it has emphasized the point recently by announcing ventures to provide cities with electric-bicycle services and shuttle services. Asked about recent drops in the company’s share prices—a sign that investors aren’t happy with a program that can only bear fruit a decade hence—Fields said his company wasn’t managed for the short run alone.

He quoted Wayne Gretzky, the famed Canadian hockey player: “You’ve got to skate to where the puck is going to go.”

Posted in Self-Driving Cars | Tagged | Leave a comment

The Surprising Story of the First Microprocessors

Intel-4004_inventors

Posing during induction ceremonies for the National Inventors Hall of Fame in 1996, Federico Faggin, Marcian “Ted” Hoff Jr., and Stanley Mazor [from left] show off the pioneering microprocessor they created in the early 1970s, the Intel 4004 Photo: Paul Sakuma/AP Photos

You thought it started with the Intel 4004, but the tale is more complicated

Posted in semiconductors | Tagged | 1 Comment

The Web Goes Public, First Email From Space, Grace Murray Hopper and COBOL

Grace_Hopper_1957

Grace Hopper and the Univac c. 1960

August 1, 1967

The US Navy recalls Grace Murray Hopper to active duty. From 1967 to 1977, Hopper served as the director of the Navy Programming Languages Group in the Navy’s Office of Information Systems Planning and was promoted to the rank of Captain in 1973. She developed validation software for COBOL and its compiler as part of a COBOL standardization program for the entire Navy to help develop the programming language COBOL.

The new language COBOL (COmmon Business-Oriented Language), first designed in 1959, extended Hopper’s FLOW-MATIC language with some ideas from the IBM equivalent, COMTRAN. Hopper’s belief that programs should be written in a language that was close to English (rather than in machine code or in languages close to machine code, such as assembly languages) was captured in the new business language, and COBOL went on to be the most ubiquitous business language to date.

Hopper made many major contributions to computer science throughout her very long career, including what is likely the first compiler ever written, “A-0.” She appears to have also been the first to coin the word “bug” in the context of computer science, taping into her logbook a moth which had fallen into a relay of the Harvard Mark II computer. She died on January 1, 1992.

Hopper has made many choice observations about the new profession she helped establish. Among them:

Programmers… arose very quickly, became a profession very rapidly, and were all too soon infected with certain amount of resistance to change.

Life was simple before World War II. After that, we had systems.

Bell_Labs.Computer_Center_1968

Bell Labs computer center 1968

August 3, 1960

Bell Laboratories scientists conduct a coast-to-coast telephone conversation by “bouncing” their voices off the Moon.

Atlantis

Space Shuttle Atlantis

August 4, 1991

The first email message is sent from space to earth. The Houston Chronicle reported:

Electronic mail networks, the message medium of the information age, made their space-age debut Sunday aboard the shuttle Atlantis as part of an effort to develop a communications system for a space station… Astronauts Shannon Lucid and James Adamson conducted the first experiment with the e-mail system Sunday afternoon, exchanging a test message with Marcia Ivins, the shuttle communicator at Johnson Space Center… The messages follow a winding path from the shuttle to a satellite in NASA’s Tracking Data Relay Satellite System to the main TDRSS ground station in White Sands, N.M., back up to a commercial communications satellite, then down to Houston, where they enter one or more computer networks… The shuttle tests are part of a larger project to develop computer and communications systems for the space station Freedom, which the agency plans to assemble during the late 1990s.

Atlantic_cable_1858

Atlantic Cable, 1858

August 5, 1858

Cyrus West Field and others complete the first transatlantic telegraph cable after several unsuccessful attempts. It operated for less than a month.

Don Juan (1926)

August 2, 1926

The first Vitaphone sound-on-disc film is debuted by Warner Bros. at the Warner Theatre in New York. The sound is recorded on a 16-inch disc, playing at 33rpm. The film, Don Juan, had great success at the box office, but failed to cover the expensive budget Warner Bros. put into the film’s production.

berners-lee

Tim Berners-Lee at CERN

August 6, 1991

Tim Berners-Lee posts a brief summary of his idea for the World Wide Web project to the alt.hypertext Usenet newsgroup. It is the first public mention of the project.

Berners-Lee message said, in part: “The WorldWideWeb (WWW) project aims to allow links to be made to any information anywhere… The WWW project was started to allow high energy physicists to share data, news, and documentation. We are very interested in spreading the web to other areas, and having gateway servers for other data. Collaborators welcome!”

In Weaving the Web, Berners-Lee wrote: “Putting the Web out on alt.hypertext was a watershed event. It exposed the Web to a very critical academic community… From then on, interested people on the Internet provided the feedback, stimulation, ideas, source-code contributions, and moral support that would have been hard to find locally. The people of the Internet built the Web, in true grassroots fashion.”

Four years later, in 1995, many were still skeptical of the Web’s potential, as this anecdote from Dr. Hellmuth Broda (in Pondering Technology) demonstrates:

I predicted at the Basler Mediengruppe Conference in Interlaken (50 Swiss newspapers and magazines) that classified ads will migrate to the web and that advertisement posters will soon carry URL’s. The audience of about 100 journalists burst into a roaring laughter. The speaker after me then reassured the audience that this “internet thing” is a tech freak hype which will disappear as fast as we saw it coming. Never–he remarked–people will go to the internet to search for classified ads and he also told that never print media will carry these ugly URL’s. Anyway the total readership of the Web in Switzerland at that time, as he mentioned, was less than that of the “Thuner Tagblatt,” the local newspaper of the neighboring town. It is interesting to note though that in 1998 (if my memory is correct) the same gentleman officially launched the first Swiss website for online advertisement and online classified ads (today SwissClick AG).

IBM Mark I Album page 102

IBM Mark I (Automatic Sequence Controlled Calculator), exterior designed by Bel Geddes.

August 7, 1944

The IBM Automatic Sequence Controlled Calculator (ASCC)–also known as the Harvard Mark I–the largest electromechanical calculator ever built was officially presented to, and dedicated at, Harvard University. Martin Campbell-Kelly and William Aspray in Computer:

The dedication of the Harvard Mark I captured the imagination of the public to an extraordinary extent and gave headline writers a field day. American Weekly called it “Harvard Robot Super-Brain” while Popular Science Monthly declared “Robot Mathematician Knows All the Answers.”… The significance of this event was widely appreciated by scientific commentators and the machine also had an emotional appeal as a final vindication of Babbage’s life.

In 1864 [Charles] Babbage had written: “Half a century may probably elapse before anyone without those aids which I leave behind me, will attempt so unpromising a task.” Even Babbage had underestimated how long it would take…. [The ASCC] was perhaps only ten times faster than he had planned for the Analytical Engine. Babbage would never have envisioned that one day electronic machines would come into the scene with speeds thousands of times faster than he had ever dreamed. This happened within two years of the Harvard Mark I being completed.

IBM applied the lessons it learned about large calculator development in its own Selective Sequence Controlled Calculator (SSEC), a project undertaken when Howard Aiken angered IBM’s Thomas Watson Sr. at the ASCC announcement by not acknowledging IBM’s involvement and financial support (which included commissioning the industrial designer Norman Bel Geddes to give the calculator an exterior suitable to a “Giant Brain”). Thomas and Martha Belden in The Lengthening Shadow:

Few events in Watson’s life infuriated him as much as the shadow cast on his company’s achievement by that young mathematician. In time his fury cooled to resentment and desire for revenge, a desire that did IBM good because it gave him an incentive to build something better in order to capture the spotlight.

chess playing robot 2009

Chess playing robot, 2009

August 7, 1970

The first all-computer championship was held in New York and won by CHESS 3.0, a program written by Atkin and Gorlen at Northwestern University. Six programs had entered. The World Computer Chess Championship (WCCC) is today an annual event organized by the International Computer Games Association (ICGA).

Posted in Computer history, email, IBM, Programming, World Wide Web | Leave a comment

The Eighth Wonder of the World

AtlanticCableEighthwonder2

July 27, 1866

The Atlantic Cable is successfully completed. The first working cable, completed in 1858, failed within a few weeks. Before it did, however, it prompted the biggest parade New York had ever seen and accolades that described the cable, as one newspaper said, as “next only in importance to the ‘Crucifixion.’”

Tom Standage quotes similar reactions in The Victorian Internet:

“The completion of the Atlantic Telegraph…has been the cause of the most exultant burst of popular enthusiasm that any even in modern times has ever elicited. The laying of the telegraph cable is regarded, and most justly, as the greatest event in the present century.”

And “Since the discovery of Columbus, nothing has been done in any degree comparable to the vast enlargement which has thus been given it the sphere of human activity.” Notes Standage:

A popular slogan suggested that the effect of the electric telegraph would be to “make muskets into candlesticks.” Indeed, the construction of a global telegraph network was widely expected… to result in world peace.

The successful installation of the cable in 1866, resulted in similar—and so familiar to us today—pronouncements. Writes Standage:

The hype soon got going again once it became clear, that this time, the transatlantic link was here to stay… [The cable] was hailed as “the most wonderful achievement of our civilization”… Edward Thornton, the British ambassador, emphasized the peacemaking potential of the telegraph. “What can be more likely to effect [peace] than a constant and complete intercourse between all nations and individuals in the world?” He asked.

elisha_gray

Elisha Gray

July 27, 1875

Elisha Gray of Chicago, Illinois, is granted a patent for “methods of transmitting musical impressions or sounds telegraphically.”

A number of inventors in addition to Gray, including Charles Bourseul, Thomas Edison, and Alexander Graham Bell, worked on similar methods for transmitting a number of telegraph messages simultaneously over a single telegraph wire by using different audio frequencies or channels for each message. Their efforts to develop “acoustic telegraphy,” in order to reduce the cost of telegraph service, led to the invention of the telephone.

Guglielmo_Marconi_1901_wireless_signal

Guglielmo Marconi

July 27, 1896

Guglielmo Marconi conducts the first public demonstration in England of his wireless telegraphy.

John Logie Baird

John Logie Baird

July 28, 1930

John Logie Baird gives the first public demonstration of his large screen television in the UK at the London Coliseum Variety Theatre. The television’s screen displays an image thirty by seventy inches, created by 2,100 lamps. The entire device is built into a small, wheeled trailer that can be moved on and off stage. The exhibition will continue for three weeks.

Two weeks earlier, on the roof of the Baird Company’s building, Guglielmo Marconi and other dignitaries watched a television play, “The Man with the Flower in his Mouth,” on the new 2100-lamp large screen in the canvas tent “theatre” set up for the occasion. Prime Minister Ramsay MacDonald, to whom Baird had gifted a deluxe home “Televisor” a few months earlier also tuned in to the broadcast at No. 10 Downing Street. Baird wrote in 1932:

The application of television to the cinema and places of public entertainment involves the use of a large screen, and considerable development work has been done in this direction. The broadcasting of the play “The Man with the Flower in his Mouth” was not only shown on the ordinary “Televisor” receivers but was also shown to a large audience on the roof of the Baird Long Acre premises on a screen 2 feet by 5 feet, and the same screen was shown in Paris, Berlin, and Stockholm; but while it attracted large audiences, the pictures could not in any way compare with the cinematograph, and the attraction was one of novelty. Since that time the screen has been so far developed that it is now approaching the perfection necessary to give full entertainment value apart from the curiosity attraction, and I believe that one of the largest fields for television lies in the cinema of the future.

July 28, 1981

ibm_dataMaster

IBM System/23 Datamaster

IBM announces its first desktop computer, the System/23 Datamaster. It was based on Intel’s 8086 16-bit processor and featured a viewing screen, up to 4.4MB of diskette storage, and Business Management Accounting and Word Processing programs. It was “designed to be taken out of the carton, set up, checked out and operated by first-time users.” At $9,830 (with optional word processing at an additional $1,100 to $2,200), the Datamaster was IBM’s lowest-priced small business system.

A month later, IBM introduced its flagship product for the personal computing market, the IBM PC.

July 30, 1959

Intel-Gordon-Moore-and-Robert-Noyce-in-1970

Intel co-founders Gordon Moore (seated) and Robert Noyce in 1970.

Robert Noyce and Gordon Moore file a patent application for a semiconductor integrated circuit based on the planar process on behalf of the Fairchild Semiconductor Corp. The patent application will be challenged by a Texas Instruments (TI) application on behalf of Jack Kilby, but in 1969, the courts will rule in favor of Noyce and Moore.

Posted in Computer history, Social Impact, Television, Wireless | 1 Comment

A history of media technology scares, from the printing press to Facebook

Don’t Touch That Dial!

By

A respected Swiss scientist, Conrad Gessner, might have been the first to raise the alarm about the effects of information overload. In a landmark book, he described how the modern world overwhelmed people with data and that this overabundance was both “confusing and harmful” to the mind. The media now echo his concerns with reports on the unprecedented risks of living in an “always on” digital environment. It’s worth noting that Gessner, for his part, never once used e-mail and was completely ignorant about computers. That’s not because he was a technophobe but because he died in 1565. His warnings referred to the seemingly unmanageable flood of information unleashed by the printing press.

Worries about information overload are as old as information itself, with each generation reimagining the dangerous impacts of technology on mind and brain. From a historical perspective, what strikes home is not the evolution of these social concerns, but their similarity from one century to the next, to the point where they arrive anew with little having changed except the label.

These concerns stretch back to the birth of literacy itself. In parallel with modern concerns about children’s overuse of technology, Socrates famously warned against writing because it would “create forgetfulness in the learners’ souls, because they will not use their memories.” He also advised that children can’t distinguish fantasy from reality, so parents should only allow them to hear wholesome allegories and not “improper” tales, lest their development go astray. The Socratic warning has been repeated many times since: The older generation warns against a new technology and bemoans that society is abandoning the “wholesome” media it grew up with, seemingly unaware that this same technology was considered to be harmful when first introduced.

Gessner’s anxieties over psychological strain arose when he set about the task of compiling an index of every available book in the 16th century, eventually published as the Bibliotheca universalis. Similar concerns arose in the 18th century, when newspapers became more common. The French statesman Malesherbes railed against the fashion for getting news from the printed page, arguing that it socially isolated readers and detracted from the spiritually uplifting group practice of getting news from the pulpit. A hundred years later, as literacy became essential and schools were widely introduced, the curmudgeons turned against education for being unnatural and a risk to mental health. An 1883 article in the weekly medical journal the Sanitarian argued that schools “exhaust the children’s brains and nervous systems with complex and multiple studies, and ruin their bodies by protracted imprisonment.” Meanwhile, excessive study was considered a leading cause of madness by the medical community.

When radio arrived, we discovered yet another scourge of the young: The wireless was accused of distracting children from reading and diminishing performance in school, both of which were now considered to be appropriate and wholesome. In 1936, the music magazine the Gramophone reported that children had “developed the habit of dividing attention between the humdrum preparation of their school assignments and the compelling excitement of the loudspeaker” and described how the radio programs were disturbing the balance of their excitable minds. The television caused widespread concern as well: Media historian Ellen Wartella has noted how “opponents voiced concerns about how television might hurt radio, conversation, reading, and the patterns of family living and result in the further vulgarization of American culture.”

By the end of the 20th century, personal computers had entered our homes, the Internet was a global phenomenon, and almost identical worries were widely broadcast through chilling headlines: CNN reported that “Email ‘hurts IQ more than pot’,” the Telegraph that “Twitter and Facebook could harm moral values” and the “Facebook and MySpace generation ‘cannot form relationships’,” and the Daily Mailran a piece on “How using Facebook could raise your risk of cancer.” Not a single shred of evidence underlies these stories, but they make headlines across the world because they echo our recurrent fears about new technology.

These fears have also appeared in feature articles for more serious publications: Nicolas Carr’s influential article “Is Google Making Us Stupid?” for the Atlantic suggested the Internet was sapping our attention and stunting our reasoning; the Times of London article “Warning: brain overload” said digital technology is damaging our ability to empathize; and a piece in the New York Times titled “The Lure of Data: Is It Addictive?” raised the question of whether technology could be causing attention deficit disorder. All of these pieces have one thing in common—they mention not one study on how digital technology is affecting the mind and brain. They tell anecdotes about people who believe they can no longer concentrate, talk to scientists doing peripherally related work, and that’s it. Imagine if the situation in Afghanistan were discussed in a similar way. You could write 4,000 words for a major media outlet without ever mentioning a relevant fact about the war. Instead, you’d base your thesis on the opinions of your friends and the guy down the street who works in the kebab shop. He’s actually from Turkey, but it’s all the same, though, isn’t it?

There is, in fact, a host of research that directly tackles these issues. To date, studies suggest there is no consistent evidence that the Internet causes mental problems. If anything, the data show that people who use social networking sites actually tend to have better offline social lives, while those who play computer games are better than nongamers at absorbing and reacting to information with no loss of accuracy or increased impulsiveness. In contrast, the accumulation of many years of evidence suggests that heavy television viewing does appear to have a negative effect on our health and our ability to concentrate. We almost never hear about these sorts of studies anymore because television is old hat, technology scares need to be novel, and evidence that something is safe just doesn’t make the grade in the shock-horror media agenda.

The writer Douglas Adams observed how technology that existed when we were born seems normal, anything that is developed before we turn 35 is exciting, and whatever comes after that is treated with suspicion. This is not to say all media technologies are harmless, and there is an important debate to be had about how new developments affect our bodies and minds. But history has shown that we rarely consider these effects in anything except the most superficial terms because our suspicions get the better of us. In retrospect, the debates about whether schooling dulls the brain or whether newspapers damage the fabric of society seem peculiar, but our children will undoubtedly feel the same about the technology scares we entertain now. It won’t be long until they start the cycle anew.

Source: Slate

Posted in Social Impact | Leave a comment

The VCR Story

Revisiting the VCR’s Origins

Photo of VCR, VHS, videocassette recording tapes
Photo: iStockphoto

1975: The VCR

JVC and Sony transformed an ingenious concept pioneered by Ampex into a major industry

(The following article was published in IEEE Spectrum in a special anniversary issue in 1988)

Consumer electronics companies worldwide felt sure that the public would be interested in a machine that would tape their favorite television programs in their absence for replay at home at their leisure. But in 1971, there were no such products on the market for consumers, and there was still some debate over what exactly people wanted. Two companies determined to solve both problems were Sony Corp. of Tokyo and The Victor Co. of Japan, known as JVC Ltd. Yokohama.

Obviously, that product had to include the convenient cassette. In 1962, the cassette had won over the mass market to audio tape recording, which until then had interested only audiophiles. But “the video problem was 10 times as complex as the audio problem,” explained Joseph Roizen, a former Ampex Corp. engineer who is now a consultant for the television and video industries.

Video signals range up to 4.2 megahertz and contain far more information than audio signals, with their 20-kilohertz maximum. An audio tape is simply pulled past an immobile recording head; but most videocassette recordings use helical scanning, with the tracks running at a diagonal across the tape and with the tape typically spiraled around a rotating drum with two or more recording heads on it. Therefore, unlike audio tape, which is left in the cassette and simply moved past the recording head, videotape must be literally pulled out of the cassette and wrapped around the drum, without ever slipping out of position.

By 1971, several companies had already built videotape players that used some type of cassette and tried to sell them to consumers—but failed. Ampex, of Redwood City, Calif., had briefly attempted to develop a product called InstaVideo that used tape cartridges. (A cartridge has only one reel, the supply reel, the take-up reel being built into the player, whereas cassettes have both supply and take-up reels built in.)

The InstaVideo (also called InstaVision) project died soon after it was brought to market. One of its problems was the cartridge, which was less reliable than a cassette and sometimes frustrated users. The group also could not get the cost down to a reasonable consumer price. Another problem, explained Roizen, was that Ampex had earned its reputation in the professional video realm, so that the sales force never seriously marketed the InstaVideo product, nor did distributors and retailers perceive it as a supplier of consumer video products.

A consortium of New York City businessmen with no experience in consumer electronics formed a company called Cartridge Television Inc. to launch a cartridge-based consumer video recorder—Cartrivision. The group spent huge sums on marketing and advertising but went bankrupt when tape problems necessitated a short recall. (For several years afterward, enterprising engineers were buying the unpackaged guts of the units for less than $100, packaging them, and reselling them.)

CBS Inc., in New York City, tried a different approach: a film cassette for home viewing of theatrically released movies, called EVR. This format could not record, however, and consumers were not interested. (Many of these failed formats are displayed at the Ampex Museum of Magnetic Recording, Redwood City.)

Sony meanwhile had developed the U-format or “U-matic,” a cassette-based recorder—in collaboration with JVC and Matsushita Electric Industrial Co., Osaka, and with licenses from Ampex—and had introduced it as a standard for VCRs in 1971. But the $2000 recorders and the $30 cassettes (in 1988 dollars about $6000 and $90) were big and heavy. The VCR unit measured 24.25 by 8.125 by 18.125 inches (61.6 by 20.6 by 46.4 centimeters) and weighed in at 59.5 pounds (27 kilograms). Consumers were again unimpressed, and the companies quickly retargeted the product to the educational and industrial training markets, where the U-format proved popular.

Smaller and cheaper

But as consumer product companies, neither Sony nor JVC was satisfied with the limited educational and industrial markets. They knew that to appeal to consumers they had to develop a VCR that was both smaller and cheaper than the U-format.

The companies hoped to work together to establish a standard for helical-scanning videocassette recorders using tape that was half an inch (12.5 millimeters) wide, which, said Roizen, “they were gong to flood the world with.” They easily agreed that the tape width should be reduced to a half inch, rather than the three-fourths of an inch. specified in the U-matic design. Then the trouble started.

Masaru Ibuka, the founder of Sony, who in the early 1950s had decreed that his engineers were to design a transistor radio the size of a man’s shirt pocket, came into the Sony offices one day, tossed the company’s employee handbook onto a table, and told his employees that the target for their VCR project was to be a videocassettes smaller than that handbook. The size of a standard American paperback (150 by 100 by 15 mm), it was to hold at least one hour of color video, he said.

Meanwhile, the then general manager of JVC’s Video Products Division, Shizuo Takano, decided that it was time for JVC to come up with a worldwide standard for home video. To get things going, the general manager of JVC’s Research and Development Division, Yuma Shirashi, drew up a matrix of requirements that was not quite as simple as the size of a paperback.

One key requirement of the system was a “more-than-two-hour recording capacity” because he noticed that movies and sporting events typically lasted two hours.

img
Photo: JVC Inc.
JVC’s engineers used this matrix as a guide to the development of its videocassette recorder. The design goals are listed on the left; applicable technologies and patent information are on the right. The circled notations in the center of the matrix indicate those technologies that had to be developed to achieve the design goals.

Sony showed a prototype of its proposed Betamax format VCR to Matsushita and a few other Japanese companies in 1974. According to Japanese trade paper, the chairmen of Sony and Matsushita met in secret late at night on the subway, with the Matsushita side arguing that it had found a way to get two hours of playing time on a cassette only a third bigger than a paperback book, with the Sony side unyielding on size and unwilling to go to a lower playing speed, which would make high picture quality harder to achieve.

Both Sony and JVC claim that their original VCR models had offered 240 lines of horizontal resolution and a signal-to-noise ratio of about 45 decibels. Frank Barr, who tests video products for Advanced Product Evaluation Laboratories in Bethel, Conn., said that at the top of the line, the early Betamax models by Sony had a slightly better resolution and signal-to-noise ratio than JVC’s early VHS models. One reason for this slight difference lies in the selection of carrier frequencies‑the VHS carrier signals fall between 3.4 and 4.4 megahertz, the Betamax signals between 4.4 and 5.g MHz, the greater bandwidth allowing higher resolution. Though this difference was almost indiscernible, it led videophiles to recommend Betamax as the ultimate format, Barr said.

After discussing the matter for about a year, the companies still would not compromise their primary design goals‑paperback size versus two hours playing time‑so they decided to go their separate ways. (A Sony spokesman told IEEE Spectrum that, to this day, “Quite frankly, it is our believe that the VHS format was realized only after a thorough study of the Betamax system.” JVC, on the other hand, said that VHS was an independent design effort based on the matrix of goals drafted in 1971, and that when the company saw the Betamax and what JVC viewed as its fatally short recording time, its own product was only about 18 months from going into production.)

Whatever the real story may have been, Roizen said, “The monolithic Japan Inc. was split.”

In addition to tape width, the companies were agreed on the use of helical-scanning technology. In audio tape recoding, the recording head stays put and lays a longitudinal track on the moving tape. In early professional video recording, four heads on a rotating drum laid tracks directly across the width of the tape.

With the quad format, as it was called, information could be more densely packed then with the longitudinal format; also, because the tracks were so short, problems with tape stretching were reduced. On the other hand, one track could not hold all the picture information in a frame, which was therefore separated into 16 tracks, with each track read by one of the four heads on the drum. Differences in head quality and alignment led to banding on the screen or “venetian blind” effects.

Helical scanning, which warps the tape around the drum at an angle, like a candy cane’s stripes, has the advantage of quad recording—reducing problems caused by tape stretching—but not its drawback—each slanted stripe can carry a full frame.

img 
Image: IEEE Spectrum
A look at how your VCR tape played (or got tangled up in the reels)

Going to a ½-inch tape in a reasonably small cartridge required a number of technological advances that, working together, reduced tape consumption from approximately 8 square meters per hour for the U-format to approximately 2 m2/h for the VHS and Betamax units (the writing speed of VHS is slightly lower than that for Betamax: 5.80 meters per second versus 7.00 m/s). For one thing, advances in IC technology made by Sony and other companies allowed VCRs to produce a better picture with less noise (the signal-to-noise ratio in the U-matic was 40 dB as against the 45dB claimed for the first Betamax and VHS recorders).

Moreover, improvements in video heads reduced their gap size by about a factor of 10, to 0.3 micrometer, allowing the tracks they wrote and read to be smaller and thereby increasing recording density. Also, advances in magnetic tape (specifically, the use of a cobalt alloy for the magnetic coating) increased its sensitivity and made it possible to pick up very short wavelengths.

Changing the guard

Besides the industrywide advances in IC, head, and tape technology, Sony and JVC found means, albeit slightly different, of adapting to their products another recording technique that increased information density.

A technique called azimuth recording had been used in black and white videotape recording since the late 1960s. In azimuth recording, the video heads are mounted at angles—tilting one to the left and one to the right—from the perpendicular to the run of the tape. Because the tracks recorded by these heads are not parallel to each other, the heads are less likely to pick up the wrong signal.

Sony tried to apply this technique to color video recording in the U-matic, but it did not work. The color signals, which use lower frequencies than black and white signals, interfered with each other, and Sony had to leave blank spaces of tape as guard bands between the video tracks.

A researcher at Sony, Nobutoshi Kihara, continued to work on this problem even after the U-matic went into production. He developed a phase-inversion system, recording the color signals on adjacent tracks 180 degrees out of phase with each other, to eliminate interference between the signals.

JVC meanwhile came up with its own solution—a phase-shift system, recording each color signal 90 degrees out of phase with adjacent tracks. Both solutions let the companies eliminate the tape-wasting guard bands, and both were patented, Sony’s in 1977 and JVC’s in 1979.

M for manufacturability

While Sony was content to duplicate in its Betamax the U-loading mechanism developed for the U-matic, JVC instead used a system it called M-loading. JVC says that M-loading made the machine easier to manufacture, more compact, and more reliable, because the tape guide poles did not contain moving parts. Sony argued that M-loading was not superior and that U-loading only looked more complicated, whereas in reality it was a simple mechanical apparatus and indeed better than M-loading because it reduced stress on the tape (an M-loaded tape wound around two sharp turns, a U-loaded tape wrapped around one pole only).

Others say that both U- and M-loading solved the same design problem, and neither had a major advantage.

With U-loading, a single arm reaches into the cassette, pulls out the tape, and wraps it around the head. With M-loading, two arms, on either side of the recording head, grab the tape and pull it against the head, the arms traveling a much shorter path than the U-loading arm.

M-loading allowed JVC’s machine to be more compact than Sony’s—so much so that the unit was half the volume and still left more room between components than the Sony design. U-loading made it easy for Sony to add a picture-search function (fast-forward while still viewing the image) to its design, while JVC had a slightly harder time adding picture-search to its machines. (M-loading as initially designed put so much stress on the tape that the tape could not be allowed to run at high speeds without first being drawn back into the cassette, away from the head. JVC solved this problem by changing the stationary guide poles to rotating guide poles.)

To record for a longer time than Sony, JVC used a cassette tape 30 percent larger in volume and, as already noted, a lower writing speed (5.8 m/s versus Sony’s 7.—m/s). Other things being equal, reducing the writing speed reduces the signal-to-noise ratio. JVC said it overcame this disadvantage by giving the signal a greater pre-emphasis boost, increasing the magnitude of some frequency components more than others to reduce noise.

Increasing the signal in this manner, however, leads to bleeding in white areas of the picture. Accordingly, in the JVC design the signal is also first sent through a high-pass filter to eliminate low frequencies, next has its high frequencies amplified and then clipped to stop the bleeding, and finally has the high frequencies recombined with the low frequencies and clipped again.

Sony offered the Betamax to Matsushita and other Japanese companies as a standard. Toshiba Corp. and Sanyo Electric Co. eventually took them up on this offer. JVC persuaded several other Japanese firms to join it in producing VHS machines. In the United Sates, Zenith Corp. initially joined the Betamax group, while RCA Crop. Went with VHS.

Those consumers that marketers call “early adapters”—the technically literate videophiles with money to burn—quickly committed themselves to Sony’s Betamax because of reports that its resolution and signal-to-noise ratio were better. But since few of them—and hardly any consumers in the mass market—could tell a difference in quality between the two formats, the convenience of longer playing time won out, and today the VHS format is clearly the consumers’ choice, particularly in the United States.
The first models were introduced in 1975 and 1976—Sony’s Betamax SL6300 at 229,800 en ($820 at 1975 rates) before JVC’s HR3300 at 256,000 ($915). Then the two formats began converging. Sony responded to JVC’s built-in clock (for unattended recording) with a plug-in timer module for its original units and with built-in timers in its later models. Sony also introduced Beta II, with two hours of playing time, and JVC responded with JVC long-play, a six-hour format.

Both companies steadily worked to improve their picture through better signal processing, magnetic heads, and recording tape, and both added features such as the ability to program the VCRs for weeks at a time. Today both formats boast five to eight hours of recording time, depending on the type of tape used, and horizontal resolutions of between 400 and 500 lines. (These top-of-the-line models, known as the S-VHS and ED-Beta, are not downwardly compatible with earlier units.)

Fumio Kohno, Sony’s managing director, told IEEE Spectrum: “Competition between the Beta and VHS formats has contributed greatly to the improvement of both. It has also stimulated progress in home VCR technology, such as 8 mm video, and in digital audio tape.”

–Tekla S. Perry

The author wishes to acknowledge the help of Joseph Roizen of Telegen

http://spectrum.ieee.org/view-from-the-valley/consumer-electronics/audiovideo/revisiting-the-vcrs-origins
Posted in Video | Tagged | Leave a comment

Birth of Intel and First Robot-Related Death

Intel-Gordon-Moore-and-Robert-Noyce-in-1970

Intel co-founders Gordon Moore and Robert Noyce in 1970.

July 18, 1968

Robert Noyce and Gordon Moore found microprocessor manufacturer NM Electronics in Santa Clara, California. In deciding on a name, Moore and Noyce quickly rejected “Moore Noyce,” homophone for “more noise” – an ill-suited name for an electronics company. Instead they used the name NM (Noyce and Moore) Electronics before renaming their company Integrated Electronics or “Intel” for short.

From an interview of Gordon Moore and Arthur Rock, the venture capitalist who was the first to invest in Intel, by John C. Hollar and Douglas Fairbairn, published in a special issue of Core, the Computer History Museum’s publication:

Hollar: Was it an intimidating idea to think that the two of you would leave Fairchild?

Moore: Not especially. We belonged to the culture of the Valley that failure is something that, if it happens to occur, you can start all over again. There’s no stigma attached to being a failure. And we had had enough success at Fairchild. We were reasonably confident we knew what we were doing.

Hollar: There was a famous one page proposal, wasn’t there?—that was drafted to explain what the nature—

Rock: It was three pages, doublespaced. Some of the investors wanted to have something in their files. So I wrote this three-page double-spaced memo. It didn’t say anything.

Moore: I didn’t realize you had written it. I thought Bob [Noyce, Intel’s co-founder] did.

Rock: No, I did. I think Bob would have been more specific.

Moore: Probably. It was rather nebulous what we were gonna do.

Fairbairn: Did you have a specific product in mind?

Moore: Well, semiconductor memory. And we went after that with three different technological approaches. I refer to it now as our “Goldilocks Strategy.” But one of them, by fortune and accident, was just difficult enough. When we were focusing on it, we could get by the two or three rather serious problems that had to be solved. But we ended up, then, with a monopoly of about seven years before anybody else got over on the silicon gate mos [metal oxide semiconductor] transistor structure that we were using. So it really worked out beautifully. Luck plays a significant role in these things. It was just a very lucky choice.

Everything we associate with today’s Silicon Valley was already there: No stigma attached to failure, audacious risk taking, willing investors, creating (temporary) monopolies, and lots of luck. Arthur Rock was a personal friend (another attribute of today’s Silicon Valley) but he also convinced others, with his 3-page memo (or 3 paragraphs?) and his own $10,000, to invest an additional $2.5 million in the “nebulous” idea of the two entrepreneurs. Moore’s 1965 prediction (which became known later as “Moore’s Law”), probably also helped convince the other investors that they are betting their money on a technology with a guaranteed exponential future.

Intel went public in 1971, raising $6.8 million.

Robot_198r

Tin Robot, 1984

July 21, 1984

A factory robot in Michigan crushes a 34 year-old worker in the first ever robot-related death in the United States.  The robot thus violated Isaac Asimov’s First Law of Robotics, “A robot may not injure a human being or, through inaction, allow a human being to come to harm,” first articulated in 1942.

Rodney Books, founder of Rethink Robotics, developer of a new type of industrial robots that don’t crush humans, predicted in 2008: “[In the 1950s, when I was born] there were very few computers in the world, and today there are more microprocessors than there are people. Now, it almost seems plausible that in my lifetime, the number of robots could also exceed the number of people.”

The worldwide stock of operational industrial robots was about 1,480,800 units at the end of 2014.

typographer

Typographer (Source: Wikipedia)

July 23, 1829

William Austin Burt, a surveyor from Mount Vernon, Michigan, receives a patent for the typographer, the earliest forerunner of the typewriter. In 2006, a Boston Globe article described the fate of typewriters today:

When Richard Polt, a professor of philosophy at Xavier University, brings his portable Remington #7 to his local coffee shop to mark papers, he inevitably draws a crowd. “It’s a real novelty,” Polt said. “Some of them have never seen a typewriter before … they ask me where the screen is or the mouse or the delete key.”

Kilby_IC

Jack Kilby and his notebook

July 24, 1958

Jack Kilby sketches a rough design of the first integrated circuit in his notebook. By the early 1960s, some computers had more than 200,000 individual electronic components–transistors, diodes, resistors, and capacitors–and connecting all of the components was becoming increasingly difficult. From Texas Instruments’ website:

Engineers worldwide hunted for a solution. TI mounted large-scale research efforts and recruited engineers from coast to coast, including Jack Kilby in 1958. At the time, TI was exploring a design called the “micromodule,” in which all the parts of a circuit were equal in size and shape. Kilby was skeptical, largely because it didn’t solve the basic problem: the number of transistor components.

While his colleagues enjoyed a two-week summer hiatus, Kilby, a new TI employee without any accrued vacation time, worked alone on an alternative in his TI lab.

TI had already spent millions developing machinery and techniques for working with silicon, so Kilby sought a way to fabricate all of the circuit’s components, including capacitors and resistors, with a monolithic block of the same material. He sketched a rough design of the first integrated circuit in his notebook on July 24, 1958.

Two months passed before Kilby’s managers, preoccupied with pursuing the “micromodule” concept, gathered in Kilby’s office for the first successful demonstration of the integrated circuit.

Kilby’s invention made obsolete the hand-soldering of thousands of components, while allowing for Henry Ford-style mass production.

Originally published on Forbes.com

Posted in Computer history, Robots, This day in information, Typewriters | Tagged , | Leave a comment